Здравствуйте друзья! Сегодня разбираем тему из начертательной геометрии – пересечение прямой линии с плоскостью и определение видимости прямой.
Задание берем из сборника Боголюбова, 1989 год, стр. 63, вар. 1. Нам требуется по заданным координатам построить комплексный чертеж треугольника ABC и прямой MN. Найти точку встречи (пересечения) прямой с непрозрачной плоскостью ABC.Определить видимые участки прямой.
Пересечение прямой линии с плоскостью
1. По координатам точек A, B и C строим комплексный чертеж треугольника и прямой NM. Начинаем чертить с горизонтальной проекции. Координаты точек проекции находим при помощи вспомогательных прямых.
2. Получаем вот такой комплексный чертеж.
3. Для определения координат точки пересечения прямой и плоскости выполним следующее.
a) Через прямую NM проводим вспомогательную плоскость Р, т.е. на фронтальной проекции проводим след плоскости Pv, на горизонтальную плоскость опускаем перпендикуляр Рн – горизонтальный след плоскости Р.
b) Находим фронтальную проекцию линии пересечения следа плоскости Р с треугольником АВС. Это отрезок d’e’. Горизонтальную проекцию находим по линиям связи до пересечения со сторонами ab (т. d) и ac (т. e) треугольника. Точки d и e соединяем.
c) Вместе пересечения de и nm будет находиться горизонтальная проекция искомой точки пересечения прямой линии с плоскостью k.
d) Проводим линию связи из k до пересечения с d’e’, получаем фронтальную проекцию точки k’.
e) по линиям связи находим профильную проекцию точки k’’.
Координаты точки пересечения прямой и плоскости К найдены. Эта точка также называется точкой встречи прямой и плоскости.
Определение видимости прямой
Для определения видимости прямой воспользуемся методом конкурирующих точек.
Применительно к нашему чертежу конкурирующими будут точки:
— точки: d’ принадлежащая a’b’ и e’ принадлежащая n’m’ (фронтально конкурирующие),
— точки: g принадлежащая bc и h принадлежащая nm (горизонтально конкурирующие),
— точки: l’’ принадлежащая b’’c’’ и p’’ принадлежащая n’’m’’ (профильно конкурирующие).
Из двух конкурирующих точек видимой будет та, высота которой будет больше. Граница видимости ограничена точкой К.
Для пары точек d’ и e’ видимость определяем так: опускаем перпендикуляр до пересечения с ab и nm на горизонтальной проекции, находим точки d и f. Видим, что координата по y для точки f больше, чем у d → точка f видима → видима прямая nm на участке f’k’, а на участке k’m’ невидима.
Аналогично рассуждаем и для пары точек g и h: на фронтальной проекции координата по z у точки h’ больше, чем у g’ → точка h’ видима, g’ – нет → прямая nm на отрезке hk видима, а на участке kn невидима.
И для пары точек l’’p’’: на фронтальной проекции координата по x больше у точки p’, а значит она закрывает собой точку l’’ на профильной проекции → р’’ видима, l’’ нет → отрезок прямой n’’k’’ видим, k’’m’’ невидим.
Заменяем в нужных местах линию nm на невидимую. На этом определение видимости прямой NM на комплексном чертеже треугольника АВС завершено.
Окончательно чертеж выглядит следующим образом.
Подробно весь процесс построения и определения видимости прямой описан в видеоуроке.
Теперь у вас не вызовет затруднений нахождение точки пересечения прямой линии с плоскостью и определение видимости прямой на проекциях чертежа.
Latest posts by Анна Веселова (see all)
- Урок 15 Отвод угловой - 07.03.2019
- Урок 14. Немного об ориентации моделей в Компасе - 07.03.2019
- Урок 13 Видео для новичков в Компас 3D! Основы построения моделей в САПР Компас - 07.03.2019
Спасибо большое за объяснение темы!!!
Начертательная геометрия, не смотря на то что черчение в школе любил, в институте дается тяжело. Методичка которую дали в институте, не особо помогает, фиг поймешь что откуда взялось, у Вас же все подробно и доступно разъяснено, еще и видео есть.
Думая еще не раз во время учебы вернусь на Ваш сайт, так что однозначно в закладки.
Еще раз спасибо!!!
Спасибо!
Спасибо вам большое, Ну я просто не понял как вы повернули все треугольники.